16+b^2=49

Simple and best practice solution for 16+b^2=49 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 16+b^2=49 equation:



16+b^2=49
We move all terms to the left:
16+b^2-(49)=0
We add all the numbers together, and all the variables
b^2-33=0
a = 1; b = 0; c = -33;
Δ = b2-4ac
Δ = 02-4·1·(-33)
Δ = 132
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{132}=\sqrt{4*33}=\sqrt{4}*\sqrt{33}=2\sqrt{33}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{33}}{2*1}=\frac{0-2\sqrt{33}}{2} =-\frac{2\sqrt{33}}{2} =-\sqrt{33} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{33}}{2*1}=\frac{0+2\sqrt{33}}{2} =\frac{2\sqrt{33}}{2} =\sqrt{33} $

See similar equations:

| 7x4=(x4)+(2x4)=+8= | | x/7+(3x)/4=7(1/7) | | 5y-14-3y+9=0 | | (x/7)+(3x)/4=7(1/7) | | 25-s=47 | | (x/7)+(3x/4)=7(1/7) | | 9=x-4/x-12 | | 2x+(4x-15)+10=55 | | 81+b^2=324 | | 16x+18=3x-12 | | 81+b^2=256 | | -4(x+5)+3x+-1=-13 | | x2-36=28 | | (x+6)/5=13 | | 2x+x=14+x | | 1/4x-4=3-1/3x | | 4(4x+-4)+x+4=-46 | | 3/2t=−18 | | 1/4x-4=3-x1/3 | | (9x-8)(4x+3)=0 | | 20+x3=27 | | 42+15+.25x=45+.35x | | x9=153 | | y9=153 | | 253=-5(6v-5) | | 14x+26=90 | | x2+10=11 | | 2s+18=16-4(s+7) | | (x+6/5)=13 | | a^2+16=100 | | 3(c+2)=-5-2(c-3) | | 7(x+1)-5x=4+2x+3 |

Equations solver categories